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1.  Overview
The intent of this project was to develop a model to measure teacher value-added for the New York City Department of Education (DOE).  The model estimates of teacher value-added were to be used initially in a research study comparing the estimates to principal ratings conducted by investigators at Columbia University, Harvard University and Dartmouth College.  Subsequently DOE staff decided to generate reports based on the model for all teachers in grades with standardized test scores in English Language Arts (ELA) and mathematics.  This technical report describes the model used in the generation of these “Teacher Data Reports.”
2.  Measuring Teacher Value-added

Conceptually, teacher value-added is the contribution made by a teacher to the achievement of a group of students.  Typically achievement is measured using standardized test scores, although other measures of achievement may be used.  The starting point for the development of the model of teacher value-added in NYC was prior research conducted by the investigators participating in the research study.  In the model used in this research, the teacher effect was measured as the difference between actual achievement and predicted achievement in the current school year for a group of students, where the prediction was based on a regression model using a set of student, classroom, school and teacher characteristics as covariates.  Most importantly, the student characteristics included the student’s achievement on the standardized test in the same subject in the prior school year.  In addition, the teacher characteristics included the teacher’s years of experience teaching in NYC.  The intent of the model was to attribute the difference between actual achievement and predicted achievement in the current school year for a group of students to the current year teacher, where the prediction controls for observed characteristics of students, classrooms, schools and teachers not related to teacher effectiveness.

Another important feature of the model was the decomposition of the variance  in the teacher effect estimates into components in order to isolate the “signal” component.  Only the portion of the variance in the teacher effect estimates due to signal was considered the teacher’s value-added in the prior research and in the NYC teacher data reports.  Similar to the intent of the regression model described in the previous paragraph, the intent of the decomposition was to remove measurable sources of variation unrelated to teacher effectiveness.  

The model described in this technical report and used to generate the teacher data reports was similar to the model used in the prior research with two material modifications.  First, to account for the mid-year administration of the standardized tests, the regression model included classroom assignment effects for the current and prior school year.  The prior year classroom assignment effect was used as a control and only the current year classroom assignment effect was used in the teacher value-added estimate.  Second, because of the inclusion of the classroom assignment effects, the model was estimated in two stages.  The first stage was the student level regression with the student demographic covariates and the classroom assignment effects.   The second stage was the teacher level regression with the classroom, school and teacher demographic covariates (with classroom data aggregated to the teacher level if the teacher had more than one classroom).

3.  Data
This section describes the data used to estimate the model and to generate the Teacher Data Reports.  Data on student demographics and student achievement on standardized tests in ELA and math were used to create the sample.  This sample was linked to data on teacher demographics based on the assignment of students and teachers to classes (for elementary grades) and courses/sections (for middle school grades).
Unless otherwise indicated, data and results for ELA and math for fifth grade in 2007-08 or pooled over three year are used for illustration in this technical report.  Data and results for other grades and years are available in a supplement to this report.
3.1 Sample

The sample included students with standardized test scores in ELA and/or math in grades 3 to 8 (Table 3.1).  Because the 3rd grade test scores were used in the student level regression model as a covariate in the 4th grade model, the value-added estimates were generated for grades 4 to 8.  The estimates were also generated over a three year time period for the 2005-06, 2006-07 and 2007-08 school years, individually and pooled across the three years.  Again, because prior year test scores and prior year classroom effects were used in the student level regression model as covariates, the model also used data from the 2004-05 and 2003-04 school years.

Table 3.1. Number of Students with Standardized Test Scores by Grade and Subject, 2007-08

	Grade
	ELA
	Math
	Grade
	ELA
	Math

	Third
	        68,906 
	        69,772 
	Sixth
	         68,937 
	         69,586 

	Fourth
	         68,995 
	         69,911 
	Seventh
	         70,761 
	         71,725 

	Fifth
	         69,321 
	         70,235 
	Eight
	         69,997 
	         71,058 


3.2 Dependent Variable

The dependent variable in the student level regression model was the student’s achievement on the New York State standardized test in ELA or math.  There were separate models for each subject, grade and school year.  As was mentioned previously, the tests were administered during the middle of the school year with the ELA test in January and the math test in March (Table 3.2.1).  
Table 3.2.1. New York State Testing Dates by Grade and Subject, 2004-05 to 2007-08

	Grade
	2004-05
	2005-06
	2006-07
	2007-08

	ELA

	Third
	April 12
	January 10-11
	January 9-10
	January 7-11

	Fourth
	January 31-4
	January 10-12
	January 9-11
	January 7-11

	Fifth
	April 12
	January 10-11
	January 9-10
	January 7-11

	Sixth
	April 12
	January 17-19
	January 16-18
	January 14-18

	Seventh
	April 12
	January 17-18
	January 16-17
	January 14-18

	Eight
	January 10-14
	January 17-18
	January 16-17
	January 14-18

	Math

	Third
	April 19
	March 7-8
	March 6-7
	March 3-7

	Fourth
	May 10-12
	March 7-9
	March 6-8
	March 3-7

	Fifth
	April 19
	March 7-8
	March 6-7
	March 3-7

	Sixth
	April 19
	March 14-15
	March 13-14
	March 6-12

	Seventh
	April 19
	March 14-15
	March 13-14
	March 6-12

	Eight
	May 10-11
	March 14-15
	March 13-14
	March 6-12


Note: In 2004-05, the ELA and math standardized tests for third, fifth, sixth and seventh grade were administered by the City of New York
The data were reported as both raw and scaled scores by testing grade and assigned to a proficiency level (Table 3.2.2).  The model used the scaled score converted to a z-score (see the methods section for details).  The z-scores accounted for differences across years and subjects in the distribution of the scaled scores and had a mean of zero and a standard deviation of one.  
Table 3.2.2. Scaled Score and Z-Score by Proficiency Level by Subject, Fifth Grade, 2007-08
	
	
	ELA
	
	
	Math
	

	Proficiency

Level
	Share of 

Students
	Average

Scaled

Score
	Average

Z-Score
	Share of 

Students
	Average

Scaled

Score
	Average

Z-Score

	1
	2.60%
	574.0
	-2.799
	4.62%
	590.5
	-2.229

	2
	27.90%
	635.0
	-0.833
	15.50%
	636.1
	-1.055

	3
	65.22%
	670.3
	0.309
	54.52%
	674.0
	-0.075

	4
	4.29%
	738.8
	2.524
	25.36%
	724.8
	1.240

	Overall

(Standard Deviation)
	100.00%
	660.9

(30.9)
	0.000

(1.000)
	100.00%
	677.1
(38.5)
	0.000

(1.000)


The scaled scores and converted z-scores were somewhat discrete values but were treated as continuous values for purposes of the model (there were 134 values for ELA; 153 for math).  The distribution is slightly wider for math than for ELA and the location of the distribution is shifted to the right for math, meaning a higher average scaled score.
3.3 Independent Variables

This section describes how the independent variables were coded in the student and teacher level models.  The selection of independent variables was based on the prior research and consultation with DOE staff.  A parsimony analysis (not described here) suggested the importance of including student race/ethnicity and gender in the model, but the results were not used to exclude any of the selected dependent variables from the model.
3.3.1 Prior Year Test Score
The student level model included as an independent variable the student’s achievement in the prior year on the standardized test in the same subject (Table 3.3.1).  As with the dependent variable, the prior year test score was reported as a scaled score and then converted to a z-score (see the methods section for details).  In addition, the model included as an independent variable the prior year test score in the same subject squared (i.e. score*score) and cubed (i.e. score*score*score) in order to improve the calibration of the model at the extremes of the distribution of the dependent variable.  Students without a test score in the prior year in the same subject were excluded from the sample.
The model also included as an independent variable the student’s achievement in the prior year on the standardized test in the different subject (i.e. math for the ELA model and ELA for the math model).  The prior year test score in the different subject was also squared and cubed.  Students without a test score in the prior year in the different subject were not excluded from the sample.  Rather, the test score value was imputed based on the other student demographic variables (see methods section for details).

Table 3.3.1 Prior Year Test Score by Subject, Fifth Grade, 2007-08

	Student Covariate

(Standard deviation)
	ELA
	Math

	
	Same subject
	Other subject
	Same subject
	Other subject

	Prior Year
	0.018
(0.980)
	0.035
(0.979)
	0.020

(0.988)
	0.002
(0.981)

	Prior year (squared)
	0.960

(2.278)
	0.960

(1.763)
	0.977
(1.796)
	0.963
(2.250)

	Prior year (cubed)
	-0.530

(10.627)
	0.226
(5.804)
	0.157
(5.967)
	-0.546
(10.442)

	%Missing or imputed
	5.48%
(missing)
	0.24%
(imputed)
	4.74%
(missing)
	2.31%
(imputed)


Note: The prior year test score is reported as a z-score
3.3.2 Student Demographics
The student demographic data included the student identifier, school year, grade level, free or reduced price lunch status, special education status, English Language Learner (ELL) status, the number of absences, the number of suspensions, summer school attendance, whether the student was new in the school, whether the student had been retained, gender and race/ethnicity.

For inclusion as independent variables in the student level regression model, these data elements were coded as either binary covariates (for the categorical data elements) or were converted using a log transformation (for the numeric data elements).  For the binary covariates, missing values were coded as zero.  For the log covariates missing values were coded as log(1) or zero.  In general, the value of the student demographic data for the school year when the independent variable test score was obtained was used.  However, because the current year and prior year teacher might have some control over the number of student absences or suspensions, the value for the number of absences and suspensions from the school year prior to the prior year was used (e.g. for the 2007-08 testing year, the value from the 2005-06 school year).   
Table 3.3.2.2 Student Demographic Covariates by Subject, Fifth Grade, 2007-08

	Student Covariates
	ELA
	Math
	Student Covariates
	ELA
	Math

	Free or reduced price lunch
	65.83%
	65.87%
	Retained in grade
	1.50%
	1.52%

	Special education
	18.85%
	18.53%
	Summer school
	11.38%
	11.79%

	English Language Learner
	10.98%
	12.39%
	New to school
	8.28%
	8.33%

	Number of suspensions
(prior year)
	0.002

(0.049)
	0.002

(0.047)
	Race/ethnicity
	71.91%
	71.71%

	Number of absences
(prior year)
	1.923

(1.090)
	1.888

(1.108)
	Female
	48.92%
	48.91%


Note: The number of suspensions and absences is reported as the log of the number of suspensions or absences.
3.3.3 Data Linking Students to Teachers
In October, all schools with eligible grades and subjects were asked to verify the teacher class assignment data used in generating teacher data reports.  In this data verification process, schools had the opportunity to identify classes that were co-taught, grades that departmentalized by subject, part time courses and other situations that may not have been fully captured in the original data. Data on student and teacher assignment to classes (for elementary grades) and courses/sections (for middle school grades) were used to link data on students to data on teachers.  The assignment data was available at two points in time: October 31st (the “fall”) and June 30th (the “spring”).  If the fall assignment data were missing the spring value was used (and conversely if the spring assignment data were missing the fall value was used).  

If the student attended the same school in the fall and the spring, and the student was assigned to the same teacher in the fall and the spring, then for purposes of attribution of the value-added estimate the teacher identifier was assigned to the file number of the teacher.  However, if the student attended a different school in the fall than the spring, or was assigned to a different teacher in the fall than the spring, then the teacher identifier was assigned to “MOBILE”.  Similarly if the school identifier, the class or course/section identifier, or the teacher file number was missing, then the teacher identifier was assigned to “UNKNOWN”.   The “MOBILE” and “UNKNOWN” students were retained in the student level model, but excluded from the teacher level model.

Schools identified some classrooms as “co-taught” classrooms.  For these classrooms, the teacher identifier was assigned to the characters “CO” followed by the last two digits of the file number for each co-teacher (the identifiers were reviewed to ensure uniqueness within school).

The student-teacher assignment was done separately for each subject.  For elementary grades the student might have the same teacher for ELA and math (based on the class assignment) or the student might have different teachers (based on the course/section assignment).  For purposes of the student-teacher assignment, elementary school grades were defined as grades 3, 4 and 5 and grade 6 in schools with a grade span of “K-5” (see the methods section for details).  For students in the elementary grades, the default was to use the course/section assignment for ELA and math.  However, if the course/section assignment was missing, then the class assignment was used.  For students in the middle school grades only the course/section assignment for ELA and math was used.

Table 3.3.3 Assignment of Teacher Identifiers by Subject, Fifth 2007-08 
	
	ELA
	Math

	Assignment Category
	Teachers
	Students
	Share
	Teachers
	Students
	Share

	Assigned teacher
	2,776
	55,034
	83.99%
	2,786
	56,259
	84.09%

	Small class
	-
	2,430
	3.71%
	-
	2,409
	3.60%

	Mobile Student
	-
	3,737
	5.70%
	-
	3,811
	5.70%

	Co-teacher
	98
	2,100
	3.20%
	99
	2,132
	3.19%

	Unassigned teacher
	-
	2,223
	3.39%
	-
	2,295
	3.43%

	Total
	2,874
	65,524
	100.00%
	2,885
	66,906
	100.00%


3.3.4. Classroom, School and Teacher Data 
In the teacher level model, the covariates included classroom and school characteristics and teacher characteristics (Table 3.3.4).  The classroom characteristics were the average values of the student characteristics (percent free or reduced price lunch, percent special education, percent ELL, percent summer school, the average number of absences and the average number of suspensions, percent new to school, percent retained in grade, percent female and percent race/ethnicity) and class size.  If the teacher had more than one classroom in a school, the characteristics were averaged over the classrooms (weighted by the number of students). 
The school characteristics were the average class size and the total number of tested students, both values converted using a log transformation.  An additional school characteristic was whether the grade was a “transition” grade.  A transition grade was defined as the minimum or maximum grade for a given school (see the methods section for details). 
The only teacher characteristics used were the number of years of experience in NYC schools and the number of years of experience in the given grade and subject.  The teacher characteristics data included the number of years the teacher had been active in NYC schools as of three points in time: September, November and May.  When coding the teacher experience in NYC schools covariate, the maximum value for the number of years the teacher had been active at those three points of time was used.  If the teacher experience data was missing, then the teacher experience in NYC covariate was coded to “unknown”.  Otherwise, the teacher experience in NYC covariate was coded to one of six categories: first year, second year, third year, fourth year, fifth year, six to ten years and more than ten years.  Experience was coded this way as research has shown that teachers tend to improve significantly during their first few years of teaching. 
The number of years of experience in the given grade and subject was computed using the student-teacher assignment data described above from the 2000-01 school year to the 2007-08 school year.  Therefore the maximum number of years of experience in a grade and subject was eight.  The teacher experience in grade and subject covariate was coded to one of five categories: one, two, three, four and five or more.  
Table 3.3.4 Classroom, School and Teacher Characteristics by Subject, Fifth Grade, 2007-08.

	Covariate
	ELA
	Math

	Years in NYC (First year)
	6.72%
	6.79%

	Years in NYC (Second year)
	8.59%
	8.63%

	Years in NYC (Third year)
	9.32%
	9.25%

	Years in NYC (Fourth year)
	7.97%
	7.87%

	Years in NYC (Fifth year)
	8.11%
	7.90%

	Years in NYC (Six to ten years)
	28.67%
	28.67%

	Years in NYC (More than 10 years)
	25.61%
	25.75%

	Years in NYC (Unknown)
	5.01%
	5.13%

	Years in grade/subject (First Year)
	28.57%
	27.31%

	Years in grade/subject (Second Year)
	21.19%
	19.62%

	Years in grade/subject (Third year)
	14.13%
	13.69%

	Years in grade/subject (Fourth year)
	14.20%
	12.24%

	Years in grade/subject (Five or more years)
	16.91%
	22.01%

	Average prior year math
	-0.082
(0.740)
	-0.065
(0.709)

	Average prior year reading
	-0.050

(0.706)
	-0.096
(0.739)

	Percent free or reduce price lunch
	67.06%
	66.95%

	Percent special education
	22.70%
	22.28%

	Percent ELL
	13.06%
	14.39%

	Average number of suspensions
	0.003
(0.016)
	0.002
(0.014)

	Average number of absences
	1.961
(0.462)
	1.921
(0.474)

	Percent retained in grade
	1.23%
	1.28%

	Percent summer school
	12.50%
	12.83%

	Percent new to school
	5.54%
	5.58%

	Percent race/ethnicity
	73.50%
	73.23%

	Percent female
	48.36%
	48.36%

	Class size
	2.921
(0.404)
	2.939
(0.402)

	Average class size (school)
	2.965
(0.226)
	2.983
(0.229)

	Total students tested (school)
	4.451
(0.508)
	4.473
(0.515)

	Transition grade (school)
	65.94%
	66.03%


Note: The prior year test score is reported as a z-score.  The number of suspensions and absences is reported as the log of the number of suspensions or absences.  The class size, average class size and total students tested is also reported as the log of the class size, average class size and total students tested.
In the teacher level model, the teacher identifiers assigned to “MOBILE” and “UNKNOWN” were excluded, and teachers with fewer than six students were excluded.  
4.  Methods
All of the analysis was conducted in Stata MP (Version 10.1) on a 64-bit Windows PC.  All of the analysis was conducted separately by subject, grade and school year.
4.1 Computation of the Z-Scores
The student standardized test scores in ELA and math are reported as scaled scores by year and grade.  In order to account for differences in the distribution of these scaled scores by year and grade, the scaled scores were converted to z-scores in the analysis, which have a mean of zero and a standard deviation of one.  The conversion was done separately for each subject, testing year and testing grade.  The z-score for a student was computed by subtracting the average scaled score from the student’s scaled score, and then dividing this difference by the standard deviation of the scaled scores.

Calculation of Z-scores


4.2 Defining Grade Spans

Schools were assigned to grade spans of “K-5”, “K-8” or “6-8”.  A “K-5” grade span was defined as a maximum grade of less than six.    A “K-8” grade span was defined as a minimum grade of less than six and a maximum grade of 6 or more.  A “6-8” grade span was defined as a minimum grade of 6 or more.
4.3 Imputation of Missing Test Scores
In the student level model, if the test score in the other subject in the prior year was missing, the value was imputed based on the student characteristics.  The imputation was done using the IMPUTE command in Stata.  The imputation was done separately by grade and year.  To impute the prior year reading z-score, a model was run using the prior year reading z-score for the non-missing students as the dependent variable and student covariates for prior year math z-score (squared and cubed), free or reduced price lunch status, special education status, ELL status, number of absences, number of suspensions, summer school attendance, new to school, retained in grade, female and race/ethnicity as the independent variables.  The coefficients from this model and the value for the student covariates for the missing students were used to compute the imputed value for the prior year reading z-score.  This imputed value was then squared and cubed for inclusion in the student level model.  The same procedure was used to impute the prior year math z-score, except that the reading z-score (squared and cubed) was used as the dependent variable.
4.4 The Student Level Model

The student level model used the current year standardized test z-score as the dependent variable and the prior year standardized test z-score (squared and cubed) in the same subject and the different subject, the student covariates, the current year classroom assignment and the prior year classroom assignment as independent variables.  Due to the large number of values for these assignment variables, the model was run separately by grade and year.
To create the covariate for the current year classroom assignment, the student’s school, teacher and classroom identifiers for the current year were combined into a single character variable.  Similarly, to create the covariate for the prior year classroom assignment, the student’s school, teacher and classroom identifiers for the prior year were combined into a single character variable.  If the number of tested students for a given classroom assignment variable was less than six, then the variable was changed to the school identifier and “small class.”  Therefore all students in small classes at a given school and grade were assigned to the same classroom assignment variable for purposes of the student level model.
The model was run using the AREG command in Stata with the ABSORB option for the current year classroom assignment effect.  Absorb subtracts the mean value for each classroom from the dependent and independent variables before running the model.  Using the XI option in Stata a binary variable was generated for each value of the prior year classroom assignment effect.  AREG then estimated a linear regression model using the dependent variable, the independent variables and a separate variable for each prior year classroom assignment.

After the model was estimated, the predicted achievement for each student was computed using the PREDICT command in Stata with the XB option.  The current year classroom assignment effect for each student was then computed using the PREDICT command with the DRESID option.  This student-level residual was the teacher effect for each student (actual achievement minus predicted achievement).  The actual gain was computed as the actual achievement minus the prior year achievement in the same subject (i.e., the z-score from the current year minus the z-score from the prior year).  The predicted gain was computed as the predicted achievement minus the prior year achievement in the same subject.  The root mean squared error and the degrees of freedom from the regression model were also retained.

4.5 Computing the Average Teacher Effect

The three-year average teacher effect was computed as the average student-level residual (i.e. average student-level teacher effect) by school and teacher, separately by grade and subject but pooled over three school years (2005-06 to 2007-08).  To compute the noise variance on this estimate, the student-level residual was squared (since the mean residual is zero) and summed across all students.  The sum was then divided by the sum of the degrees of freedom from the three single-year regression models to compute the mean squared error for the pooled regression model. The noise variance for the three-year teacher effect for each teacher was the mean squared error divided by the number of tested students over the three years for each teacher. In addition to the three-year teacher effect, the number of tested students, average actual gain, average predicted gain, average prior year achievement, and average student characteristics by school and teacher were computed.  These values were used in the three-year teacher level model.  

4.6 Computing the Average Teacher Effect for Student Subgroups
The overall three-year average teacher effect was decomposed into separate effects for five subgroups of students.  The five subgroups were the citywide third based on the prior year achievement in the same subject, the school-wide third based on prior year achievement in the same subject, student gender, ELL status and Special Education Status.  For citywide and school wide third, each student was assigned to one of three categories: the 1-33rd percentile (bottom), 34th-66th percentile (middle) and 67th-100th percentile (top) based on prior year achievement.  
In order to decompose the three-year average teacher effect, the subgroup teacher effect was computed as the overall teacher effect multiplied by the proportion of the average student level residual (i.e. average student teacher effect) attributed to each category within the subgroup.  For each of the five subgroups, the overall teacher effect was equal to the sum of the teacher effect for each subgroup category (e.g. bottom, middle and top citywide third).

In addition to the subgroup teacher effect, the number of tested students, average actual gain, average actual gain and average prior year achievement for each subgroup category by school and teacher was computed.  

4.7 The Teacher Level Model

The teacher effect that resulted from the student level model included controls for student characteristics and prior year classroom assignment.  The teacher level model included controls for average classroom characteristics, school characteristics and teacher characteristics.
The initial sample included the three-year average teacher effect for each school and teacher by grade and subject.  Teacher identifiers of “MOBILE” and “UNKNOWN” were excluded from the sample.  Teachers with fewer than six students were also excluded.  

The model was a linear regression using the teacher effect as the dependent variable and the teacher, classroom and school covariates as the independent variables without a constant and weighted by the inverse of the noise variance for each teacher.  The model used the REG command in Stata.  The PREDICT command in Stata was used to compute the prediction from the model, and the PREDICT command with the RESID option was used to compute the residual from the model.  The sum of the predicted gain from the student level model and from the teacher level model (less the predicted gain due to experience) were used to assign teachers to “peer” quintiles.

4.8 Computation of Teacher Value-added
The “total variance” on the teacher effect was decomposed into two components: noise variance and signal variance.  The “noise variance” is variance that tends toward zero with the addition of more tested students per teacher and is sometimes referred to as estimation error or random error.  The “signal variance” is the variance that remains after removing the noise variance and is sometimes referred to as systematic variance.  Only the portion of the variance in the teacher effect estimates due to signal was considered the teacher’s value-added in the prior research and in the NYC Teacher Data Reports.    

The noise variance was computed as described above and varied for each teacher.  The total variance was computed as the weighted average of the residual from the teacher level regression model squared, where the weight was the inverse of the noise variance squared.  The signal variance was computed as the weighted average of the difference between the total variance and the noise variance.  The weight was the inverse of the noise variance squared.  

Table 4.8 Variance Components for ELA and Math, Fifth Grade.

	Grade
	Subject
	Total

Variance
	Signal

Variance
	Noise

Variance
	Signal-to-

Noise

	Fifth grade
	ELA
	0.0837
	0.0718
	0.0119
	0.858

	
	Math
	0.0918
	0.0837
	0.0081
	0.912


The “citywide” teacher value-added was then computed as the residual from the teacher level model multiplied by the signal-to-noise ratio plus the predicted gain due to the teacher experience category. The signal-to-noise ratio was calculated as the signal variance divided by the sum of the signal variance and noise variance. Since the noise variance varies for each teacher, the signal-to-noise ratio also varies for each teacher.  This calculation is known as “shrinkage” using an empirical Bayes shrinkage estimator.    The “peer” teacher value-added was the “citywide” value-added less the predicted gain due to the teacher experience category.  
4.9 Computation of Teacher Value-added Lower and Upper Bound

The variance of this value-added estimate was computed as the signal variance times one minus the signal-to-noise ratio.  To compute a 95% confidence interval around the teacher value-added estimate, the upper bound was computed as the teacher value added estimate plus 1.96 multiplied by the square root of the variance of the teacher value-added estimate.  The lower bound was computed as the teacher value estimate added minus 1.96 multiplied by the square root of the variance of the teacher value-added estimate.  

4.10 Computation of Teacher Value-added Percentiles and Assignment to Performance Categories
The citywide population mean was the weighted average of the value-added for each teacher, weighted by the number of students.  The citywide population variance was the sum of the signal variance and the variance due to the teacher experience category.  The square root of the population variance was the population standard deviation.  The peer population mean was the weighted average of the peer value-added for each teacher by predicted gain quintile, weighted by the number of students.  The peer population variance was the signal variance (without the variance due to the teacher experience category).  The square root of the population variance was the population standard deviation.  
The percentile for the teacher was computed as the cumulative normal of z, where z was computed as the population mean minus the teacher value-added divided by the population standard deviation.  The upper bound percentile was computed as the cumulative normal of z, where z was computed as the population mean minus the upper bound of the teacher value-added estimate divided by the population standard deviation. The lower bound percentile computed as the cumulative normal of z, where z was computed as the population mean minus the lower bound of the teacher value-added estimate divided by the population standard deviation.
The teacher value-added was assigned to a performance category of “low” (the bottom 20%), middle (the middle 60%) or “high” (the top 20%).  The thresholds were computed as the population mean plus 0.84 times the population standard deviation (for the top threshold) and the population mean minus 0.84 times the population standard deviation (for the bottom threshold).   The probability that the value-added estimate fell into the top category was computed as 1 minus the normal cumulative of z, where z was computed as the high threshold minus the value-added divided by the standard deviation of the value added.  The probability that the value-added fell into the low category was computed as the normal cumulative of z, where z was computed as the low threshold minus the value-added divided by the standard deviation of the value added.  The probability that the value-added fell into the middle category was 1 minus the sum of the probability that the value-added fell into the high category plus the probability that the value-added fell into the low category.  The teacher was assigned to the performance category with the highest probability.

4.12 Computation of the Teacher Value-added Percentiles and Assignment to Performance Categories for Student Sub-groups
For each subgroup, the category weight was the proportion of students in that category.  The inverse category weight was 1 / category weight (if the category weight does not equal zero, otherwise the inverse category weight was assigned to zero).  The subgroup category residual from the teacher level model was the subgroup category teacher effect minus the prediction from the teacher level model times the category weight.  Therefore, the overall residual equals the sum of the subgroup category residuals.

The value-added estimate for the subgroup category was the subgroup category residual multiplied by the overall signal-to-noise ratio multiplied by the inverse category weight.  Therefore, the overall value-added estimate equaled the weighted average of the subgroup category value-added estimates, where the weight was the proportion of students in each subgroup category.  The variance of the subgroup category value-added estimate was computed as the overall value-added variance multiplied by the inverse of the category weight.  The standard error was the square-root of the variance.
4.13 Computing the One-Year Teacher Effect and Value Added
Because a teacher may have fewer than six students in any single year, but six or more students when pooled over three years, some teachers may have been included in the three-year model but not the one-year models.

The one-year teacher effect was computed as the average student level residual (i.e. average student value-added) by school and teacher, separately by grade, subject and school year (2005-06, 2006-07 and 2007-08).  To compute the noise variance on this estimated one-year teacher effect, the student level residual was squared (since the mean residual is zero) and summed across all students.  The sum was then divided by the degrees of freedom from the regression model to compute the mean squared error for the regression model for a given school year. The noise variance for the one-year teacher effect for each teacher was the mean squared error divided by the number of tested students for a given school year for each teacher.  In addition to the one-year teacher effect, the number of tested students, average actual gain, average predicted gain, average prior year achievement, and average student characteristics by school and teacher were computed.  These values were used in the one-year teacher level model.  

The one-year teacher value added was computed using the same method as three-year teacher value added, with one difference. The one-year estimates included additional noise variance, above what would be observed in the three-year estimates, due to idiosyncratic factors that affect a teacher’s performance in any single year. Therefore, the “total variance” on the one-year teacher effect was decomposed into three components: noise variance, signal variance and an additional “adjustment” to capture this one-year idiosyncratic variance. This resulted in a signal variance for the one-year teacher estimates that was comparable to the signal variance in the three-year estimates. 

The adjustment was based on the additional variance observed in one-year teacher effects compared to the variance in two-year teacher effects, after adjusting for the noise variance in the one-year teacher effect. This adjustment was calculated as the difference between the total variance from the one-year teacher effect and the total variance from a two-year teacher effect (computed analogously to the one-year effect but using two years of data), minus the noise variance in the one-year teacher effect. The signal variance for the one-year teacher effect was then computed as the difference between the total variance and the sum of the adjustment plus the noise variance.  As with the three-year estimates, all variance estimates were calculated on a weighted basis. The weight was the squared inverse of the adjustment plus noise variance. The signal-to-noise ratio was calculated as the signal variance divided by the sum of the signal, adjustment, and noise variance. One-year teacher value added was calculated in the same manner as three-year value added, using this adjusted signal-to-noise ratio.
Table 4.13 Variance Components for ELA and Math, Fifth Grade.

	School Year
	Subject
	Total

Variance
	Signal

Variance
	Signal

Adjustment
	Noise

Variance
	Signal-to-

Noise

	2005-06
	ELA
	0.1228
	0.0660
	0.0402
	0.0166
	0.537

	
	Math
	0.1250
	0.0622
	0.0510
	0.0117
	0.498

	2006-07
	ELA
	0.1266
	0.0559
	0.0530
	0.0177
	0.442

	
	Math
	0.1310
	0.0844
	0.0344
	0.0122
	0.644

	2007-08
	ELA
	0.1585
	0.0895
	0.0488
	0.0203
	0.565

	
	Math
	0.1448
	0.1023
	0.0290
	0.0135
	0.706


4.14 Computations in the Reports

In the reports the assignment to a performance category was designated with an asterisk if the upper bound of the percentile range was greater than the population mean, or the lower bound of the percentile range was less than the population mean.

The “grade total” in the reports was the average percentile (upper and lower bound) for all the teachers in the grade and the sum of the number of students.

4.15 Converting Z-scores to Proficiency Ratings

The value-added measures are reported as proficiency ratings rather than z-scores.  A proficiency rating is a metric based on the scaled score and the assignment of scaled scores to a proficiency level (i.e. 1, 2, 3 or 4).  To compute the proficiency rating, the minimum and maximum scaled score was computed for each testing grade and proficiency level.  The proficiency rating for a student was then computed as the difference between the scaled score and the minimum scaled score divided by the difference between the maximum scaled score for the student’s proficiency level, resulting in a number that ranges between 0 and 1.  For students in proficiency level 1, the number was multiplied by 0.99 and added to 1.0, resulting in a number that ranges between 1.0 and 1.99.  For students in proficiency level 2, the number was multiplied by 0.99 and added to 2.0, resulting in a number that ranges between 2.0 and 2.99.  For students in proficiency level 3, the number was multiplied by 0.99 and added to 3.0, resulting in a number that ranges between 3.0 and 3.99.  For students in proficiency level 4, the number was multiplied by 0.50 and added to 4.0, resulting in a number that ranges between 4.0 and 4.50.
To convert the z-score to the proficiency rating, the mean and standard deviation of the proficiency rates was computed.  In the reports, the prior year rating was computed by multiplying the prior year z-score by the proficiency rating standard deviation and adding the proficiency level mean.  If the value exceeded 4.0 the value was reported as “4.0+”; if the value was less than 1.5 then the value was reported as “<1.5”.  Similarly, the actual gain was computed by multiplied the actual gain z-score by the proficiency rating standard deviation and the value-added was computed by multiplied the value-added z-score by the proficiency rating standard deviation  
The predicted gain was computed as the difference between the actual gain and the value-added (equivalently, the value-added was the difference between the actual gain and the predicted gain).

5.  Results
5.1 Results from the Student level model

Table 5.1 shows the results from the student level model for ELA and math in fifth grade for 2007-08.  These coefficients were used to estimate the predicted achievement in the current testing year based on prior year achievement, student characteristics, and prior year classroom assignment.  Because the z-scores have a standard deviation of one, the coefficients may be interpreted as a percentage of a z-score.  For example, if a student had a z-score of 1.0 in the prior year (meaning the student was in the 84th percentile of the student distribution) then the model estimated that on average the student would have a z-score of 0.56 (0.56 x 1.0 or 56% of the prior year z-score) in the current year (meaning the student was in the 71st percentile of the student distribution).  Similarly, if the student had a z-score of -1.0 in the prior year (16th percentile) the model estimated that on average the student would have a z-score of -0.56 (29th percentile) in the current year.  In other words, students tend to score closer to the mean in the subsequent year.

 Prior year test score was the most important covariate in terms of predicting current year achievement, both for the same subject and the different subject.  In ELA the other student characteristics that had a significant negative impact were free or reduced price lunch status, special education status, ELL status and race/ethnicity.  The characteristics that had a significant positive impact were retained in grade and summer school attendance. In math the other student characteristics that had a significant negative impact were special education status, number of absences and race/ethnicity.  The characteristics that had a significant positive impact were retained in grade and summer school attendance.  
Table 5.1 Coefficients from the Student Level Model for ELA and Math, Fifth Grade, 2007-08

	Covariates
	ELA
	Math

	Prior year (same subject)
	0.5631*
(0.0057)
	0.7639*
(0.0046)

	Prior year (squared)
	-0.0185*
(0.0019)
	-0.0400*
(0.0014)

	Prior year (cubed)
	-0.0120*
(0.0005)
	-0.0264*
(0.0005)

	Prior year (different subject)
	0.2270*
(0.0057)
	0.1258*
(0.0047)

	Prior year (squared)
	-0.0020
(0.0018)
	0.0108*
(0.0016)

	Prior year (cubed)
	-0.0044*
(0.0007)
	-0.0005
(0.0004)

	Free or reduced price lunch
	-0.0508*
(0.0070)
	-0.0066
(0.0057)

	Special education
	-0.1031*
(0.0089)
	-0.0854*
(0.0073)

	English Language Learner
	-0.0973*
(0.0106)
	0.0163
(0.0084)

	Number of suspensions
(prior year)
	0.0892
(0.0543)
	0.0104
(0.0459)

	Number of absences
(prior year)
	-0.0002
(0.0025)
	-0.0376*
(0.0020)

	Retained in grade
	0.2173*
(0.0449)
	0.4146*
(0.0362)

	Summer school
	0.0536*
(0.0106)
	0.0550*
(0.0085)

	New to school
	-0.0004
(0.0139)
	-0.0217
(0.0113)

	Race/ethnicity
	-0.0176*

(0.0081)
	-0.0981*

(0.0065)

	Female
	0.0087

(0.0051)
	-0.0035

(0.0042)

	Number of students
	65,524
	66,906

	Adjusted R-squared
	0.6205
	0.7431

	Current Year Classroom F-test
	F(3854, 57998) = 1.560
	F(3862, 59371) = 2.725

	F-test
	F(3671, 57998) = 11.14
	F(3672, 59371) = 21.52


Note: An asterisk (*) denotes a p < 0.05.   
The difference between actual achievement and the predicted achievement for each student as estimated from the model were then aggregated to the teacher level as an estimate of the average value-added for each teacher.  This average student level residual was then adjusted in the teacher level model for classroom, school and teacher characteristics.

5.2 Results from the teacher level model

Table 5.2 shows the results from the teacher level model for ELA and math in fifth grade for 2007-08.  These coefficients were used to adjust the estimate of teacher value-added from the student level model for classroom, school and teacher characteristics
.  The model estimated a predicted value-added for each teacher and the residual from the model (actual-predicted) was the “adjusted” value-added or value-added relative to teachers with similar classroom, school and teacher characteristics.  Two different estimates of value-added were calculated.  The “citywide” estimate removes the prediction for the teacher experience covariates (both years in NYC and years in grade/subject).  The “peer” estimate retains the prediction for the teacher experience covariates.
Because the teacher experience covariates were mutually exclusive, one category was omitted from the model (six to ten years of experience).  The coefficients on the other experience in NYC categories were estimated relative to the omitted category.  In addition, the coefficients were estimated relative to the number of years of experience in the same grade and subject, with the first year as the omitted category.  Therefore, for any given teacher the total teacher experience effect was the sum of the years in NYC effect and the years in same grade/subject effect.  In general, fewer years of experience in NYC had a negative impact while more years of experience in the grade and subject had a positive impact.
Table 5.2 Coefficients from the Teacher Level Model for ELA and Math, Fifth Grade, 2007-08
	Covariate
	ELA
	Math

	Years in NYC (First year)
	-0.0764*
(0.0362)
	-0.1107*
(0.0346)

	Years in NYC (Second year)
	-0.0725*
(0.0313)
	-0.0424
(0.0301)

	Years in NYC (Third year)
	0.0503
(0.0297)
	-0.0017
(0.0286)

	Years in NYC (Fourth year)
	-0.0960*
(0.0310)
	-0.0604*
(0.0300)

	Years in NYC (Fifth year)
	-0.0255
(0.0301)
	-0.0443
(0.0291)

	Years in NYC (Six to ten years)
	-


	-



	Years in NYC (More than 10 years)
	-0.0094
(0.0210)
	-0.0565*
(0.0198)

	Years in NYC (Unknown)
	-0.0066
(0.0405)
	-0.0032
(0.0384)

	Years in grade/subject (Second Year)
	0.0120
(0.0233)
	0.0211
(0.0229)

	Years in grade/subject (Third year)
	0.0121
(0.0267)
	0.0301
(0.0260)

	Years in grade/subject (Fourth year)
	0.0661*
(0.0271)
	0.0573*
(0.0273)

	Years in grade/subject (Five or more years)
	0.0340
(0.0265)
	0.0753*
(0.0241)

	Average prior year math
	0.0474
(0.0321)
	0.1986*
(0.0295)

	Average prior year reading
	0.1355*
(0.0307)
	-0.0323
(0.0314)

	Percent free or reduce price lunch
	0.0503
(0.0281)
	-0.0534*
(0.0266)

	Percent special education
	0.0926*
(0.0461)
	0.1460*
(0.0451)

	Percent ELL
	0.0785
(0.0496)
	0.0423
(0.0461)

	Average number of suspensions
	-0.4101
(0.5204)
	-0.9911
(0.5519)

	Average number of absences
	-0.0159
(0.0219)
	-0.0189
(0.0208)

	Percent retained in grade
	-0.0035
(0.1913)
	-0.0813
(0.1716)

	Percent summer school
	0.0474
(0.0541)
	-0.0731
(0.0513)

	Percent new to school
	-0.0928
(0.0827)
	-0.0522
(0.078)

	Percent race/ethnicity
	0.0742*
(0.0352)
	0.2418*
(0.0334)

	Percent female
	0.0214
(0.0661)
	0.0294
(0.0642)

	Class size
	-0.0416
(0.0379)
	-0.1494*
(0.0364)

	Average class size (school)
	-0.0013
(0.0447)
	0.0740
(0.0426)

	Total students tested (school)
	-0.0018
(0.0180)
	0.0174
(0.017)

	Transition grade (school)
	0.0683*
(0.0168)
	0.0334*
(0.0160)

	Number of teachers
	2,874
	2,885

	Adjusted R-squared
	0.0530
	0.0507

	F-test
	F(27,  2847) = 6.96
	F(27,  2858) = 6.71


Note: An asterisk (*) denotes a p < 0.05.   
In ELA, the classroom and school characteristics that had a significant positive impact were average prior year reading, percent special education, percent race/ethnicity and transition grade.  “Positive impact” means that teachers of similar experience in classrooms and schools with those characteristics tended to have higher adjusted teacher effect then teachers of similar experience in classrooms and schools without those characteristics.  No characteristic had a significant negative impact.  In math, the characteristics that had a significant positive impact were average prior year math, percent special education, and percent race/ethnicity and transition grade.  The characteristics that had a negative impact were percent free or reduced price lunch and class size.
5.3 Results from the Variance Decomposition

The residual from the teacher level model was the “adjusted” value-added estimate accounting for classroom, school and teacher characteristics.  The estimate was further adjusted to account for the sources of variation
.  The parameters used were shown in the methods section above and the resulting value-added estimates are shown in the tables and figures in the sections below. 
5.4 Distribution of Teacher Value-added: Citywide
This section shows the distribution of the “citywide” teacher value-added estimates.  The citywide estimates do not adjust for teacher experience and the percentiles were computed relative to all classrooms citywide (in the same grade and subject).
All of the estimates are shown as proficiency ratings using the conversion method described above.  The estimates may be interpreted as the average contribution made by the teacher to the achievement of the students in the teacher’s classroom, where achievement was measured as a proficiency rating on the ELA or math standardized test.  For example, a value-added of 0.1 means that on average the students for that teacher achieved a tenth of a proficiency rating higher.  Similarly, a value-added of -0.2 means that on average the students for that teacher achieved 0.2 of a proficiency rating lower. Across all teachers in the grade, subject and school year the average value-added was zero, meaning that value-added is a relative concept and not an absolute concept.  
Figure 5.4.1 Distribution of Teacher Value-added for ELA, Fifth Grade
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Note: The one year estimates is 2007-08; the three year estimate is 2005-06 to 2007-08.  The value added is shown as a proficiency rating.
Figure 5.4.1 shows the distribution of value-added for ELA for one year (2007-08) and three-years (2005-06 to 2007-08).  The distributions were normally distributed around the mean with a range of about -0.4 to 0.4 of a proficiency rating.  The three year distribution was slightly broader than the one-year distribution due to the large sample sizes of students per teacher. 

Figure 5.4.2 Distribution of Teacher Value-added for Math, Fifth Grade
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Note: The one year estimates is 2007-08; the three year estimate is 2005-06 to 2007-08.  The value added is the citywide estimate and is shown as a proficiency rating.
Figure 5.4.2 shows the distribution of value-added for math for one year (2007-08) and three-years (2005-06 to 2007-08).  The distributions were normally distributed around the mean with a range of about -0.5 to 0.5 of a proficiency rating, which was slightly broader than the distribution for ELA.  The three year distribution was similar to the one-year distribution. 

Table 5.4.1 Average Value-added and Share of Teachers Estimated by Model Percentile, Fifth Grade
	
	ELA
	
	
	
	Math
	
	
	

	
	1 Year
	
	3 Year
	
	1 Year
	
	3 Year
	

	Model

Percentile
	Value-added
	Share of Teachers
	Value-added
	Share of Teachers
	Value-added
	Share of Teachers
	Value-added
	Share of Teachers

	10th
	-0.307
	3.43%
	-0.282
	6.80%
	-0.384
	5.09%
	-0.333
	9.33%

	20th
	-0.166
	4.66%
	-0.147
	8.52%
	-0.225
	8.50%
	-0.179
	10.87%

	30th
	-0.108
	9.87%
	-0.096
	11.35%
	-0.147
	12.02%
	-0.106
	11.01%

	40th
	-0.062
	15.23%
	-0.055
	12.69%
	-0.084
	11.95%
	-0.048
	11.20%

	50th
	-0.022
	18.07%
	-0.018
	14.11%
	-0.028
	13.20%
	0.002
	10.99%

	60th
	0.019
	17.12%
	0.018
	13.17%
	0.025
	13.38%
	0.051
	11.16%

	70th
	0.060
	14.85%
	0.055
	12.41%
	0.083
	13.58%
	0.105
	11.97%

	80th
	0.106
	7.39%
	0.096
	8.30%
	0.145
	8.50%
	0.160
	7.43%

	90th
	0.161
	5.95%
	0.148
	7.12%
	0.223
	8.92%
	0.231
	9.14%

	100th
	0.274
	3.43%
	0.247
	5.53%
	0.356
	4.88%
	0.365
	6.89%


Note: The one year estimates is 2007-08; the three year estimate is 2005-06 to 2007-08.  The value added is the citywide estimate and is shown as a proficiency rating.
Table 5.4.1 shows the average value-added and share of teachers by model percentile for ELA and math over one-year and three-years.  “Model percentile” means the distribution of value-added as estimated by the model.  The variance decomposition means that the distribution actual observed will be less than the distribution estimated by the model, meaning that more teachers will be in the middle portion of the distribution.  As more students per teacher and more units of observation were added, the observed distribution became closer to the model distribution as those sources of variation tend toward zero.
For ELA, in the one-year estimate the average value-added in the 10th percentile was -0.307 and the share of teachers was 3.43%.  In the three-year estimate the value-added in the 10th percentile was -0.282 and the share of teachers was 6.80%.  For math, in the one-year estimate the average value-added in the 10th percentile was -0.384 and the share of teachers was 5.09%.  In the three-year estimate the value-added in the 10th percentile was -0.333 and the share of teachers was 9.33%.  In generally, pooling data over three years results in a greater share of teachers in the ends of the distribution.  The distribution tends to be broader for math than for ELA.
5.5 Distribution of Teacher Value-added: Peer
This section shows the distribution of the “peer” teacher value-added estimates.  The peer estimates do adjust for teacher experience and the percentiles were computed relative to classrooms with similar average student predicted gain (in the same grade and subject).  The teachers were assigned to quintiles based on the average student predicted gain; there are referred to as “peer quintiles.”  The results in the section are the three-year estimates.
Figure 5.5.1 Distribution of Teacher Value-added for ELA by Peer Quintile, Fifth Grade
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Note: The three year estimate is 2005-06 to 2007-08.  The value added is the peer estimate and is shown as a proficiency rating.
Figure 5.5.1 shows the distribution of the value-added estimates for ELA by peer quintile.  The first quintile (Q1) had the lowest average student predicted gain.  The fifth quintile (Q5) had the highest average student predicted gain.  The distribution of value-added for teachers in the first quintile tends toward the positive, while the distribution of value-added for teachers in the fifth quintile tends toward the negative.  That means teachers in classrooms with higher average student predicted gain have on average lower value-added, and that teachers in classrooms with lower average student predicted gain have on average higher value-added.  One might interpret that result as the difficulty of achieving actual gains more than predicted gains increased as the average student predicted gain was higher.  Conversely, the difficulty of achieving actual gains more than predicted gains decreased as the average student predicted gain was lower. 
Figure 5.5.2 Distribution of Teacher Value-added for Math by Peer Quintile, Fifth Grade
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Note: The three year estimate is 2005-06 to 2007-08.  The value added is the peer estimate and is shown as a proficiency rating.
Figure 5.5.2 shows the distribution of the value-added estimates for math by peer quintile.  The first quintile (Q1) had the lowest average student predicted gain.  The fifth quintile (Q5) had the highest average student predicted gain.  As with ELA, the distribution of value-added for teachers in the first quintile tends toward the positive, while the distribution of value-added for teachers in the fifth quintile tends toward the negative.  That means teachers in classrooms with higher average student predicted gain have on average lower value-added, and that teachers in classrooms with lower average student predicted gain have on average higher value-added.  One might interpret that result as the difficulty of achieving actual gains more than predicted gains increased as the average student predicted gain was higher.  Conversely, the difficulty of achieving actual gains more than predicted gains decreased as the average student predicted gain was lower.  This is one reason why the Teacher Data Initiative reports calculate peer percentiles, comparing teachers within the same peer quintile to reflect the different challenge faced by teachers in each quintile. 
T – the student’s scaled score in ELA or math


M – the mean scaled score by testing year and testing grade


S – the standard deviation of the scaled score by testing year and testing grade





Z = (T – M) / S








�� One may also describe the teacher level model as adjusting the average predicted achievement of the students for the characteristics of the classroom, school and teacher, therefore adjusting the actual minus predicted achievement (value-added)


� One may also describe the variance adjustment of the residual as an adjustment of the average predicted achievement of the students, therefore adjusting the actual minus predicted achievement (value-added)
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